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1. Introduction

We will in this paper work with the interaction of two random point processes
such that points in a renewal point process, the excitatory process, are eliminated
by points in an independent inhibitory process. Such a thinning situation was sug-
gested by M. TEN HoopeN and H. A. REUVER in [3] as a mathematical model for
neuron firing. In [1] it is discussed how this thinning procedure applies to certain
stochastic service systems. Various aspects of this kind of interaction of renewal
processes is treated at length in [2]. Our interest in this paper is in the response process
of those retained points of the exmtatory process which complete a cluster of retained
points, which are near each other in some sense. We will first considers cluster of k
successive retained points with no eliminated points between them. Such clusters
were considered in [2] for some simple elimination schemes. We will here extend
and modify the treatment in [2]. We will also prove a limit theorem for k—co. We
will furthermore generalize to clusters of k retained points, such that at most r
points have been eliminated between any two successive points. Finally, we will
mention some applications.

2. Waiting for a Cluster

We assume that the excitatory process is a discrete time renewal process. Let
r¢ be the geometric transform (or probability generating function) of its inter-

arrival distribution, r9(s)= Zrks" Furthermore we assume that the inhibitory

process is a g-binomial process, independent of the exmtatory process: that is,
at each discrete time epoch a point of the inhibitory process is realized with prob-
ability ¢=1—¢, independently of what happens at other time epochs.

The elimination takes place according to the following scheme. Assume that
the points of the exc1tatory process are realized at the times #;, %, ... . If one or
more inhibitory points arrive at times 1, ..., u,, the next j excitatory polnts starting
with the one at u; will be eliminated w1th probability p;, where j€ {0, 1, ...}. Note
that p, is the probability that the inhibitors have no elimination effect. For n=2,
assume that the point at u, has not been eliminated by 1nh1b1tory points arriving at
times 1, ..., u,_,. If one or more inhibitory points arrive at times u,_,+1, ..., ty,
the next _] excnatory points starting with the one at u, will be eliminated w1th prob-
ability p;. A point of the inhibitory process has no elimination effect if a simulta-
neous or subsequent excitatory point already has been eliminated by previous in-
hibitors.
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We are in this section interested in the response process consisting of those
points of the excitatory process, which satisfy the following condition. Each such
point is the last point in a sequence of k successive points of the excitatory process,
none of which has been eliminated and of which only the last one is a point of the
response process. Here k is a fixed positive integer.

Let pf be the geometric transform of the inter-arrival distribution of this em-
bedded renewal process. In order to derive an expression for pg(s) we will use the
collective marks (or the additional event) method. Thus we add a marking process
to the situation such that each time epoch is marked independently with probability
1—s, and not marked with probability 5. This implies that r¢(s) is the probability
that no marks are given during the excitatory interval.

We now define probabilities dy(s) and d; (s) as follows:

dy(s)=the probability that no marks are given during the first excitatory interval
[1, u;] and that the point at the end of this interval is not eliminated,

dy(s)=the probability that the inhibitors arriving during the first excitatory interval
eliminate one or more consecutive points of the excitatory process, and
that up to and including the last elimination no marks have been given.

‘We now get by proper conditioning

@1 do(s) = kg 1S (9 + (1= 9M)po) = 19(05) +po(r* () — P (95)).

Let furthermore d; ;(s) be the probability that no marks are given during the first
excitatory interval and that the next j points are eliminated. (Time epochs after the

first excitatory interval may or may not be marked.) Then d, (s)= f dy, j(s)re(s)y -t
We have for je{l,2,...} =
dy &) = Znat(l-09, = p, (7 (9 ~r*(s)),
from which it follows with p#(s) = 2-;" p;st
i=
@2 dy(s) = rP(s)~}(r?(s) — r* (95)) (2 (r* (5)) — o).

If we interprete pf(s) as the probability of no marks during the waiting time for the
first point of the response process, we get by conditioning

PO = do(o+ 3 o) )pA(6),

which gives

a6 (-d(s)
A = T30 -4 (- 4GF)
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This result can be written as

1—dy(s)*
@3 1=6) = (1-d6) T T

whered(s) =d, (s)+d, (s). By dividing with 1 —s and letting s—~1 we get an expression
for the expectation u,=pf’(1). With

p=r'(1), a=1-r(p), b=r(p)

and
o= >kp
k=1
we get
1—(b+pya)
@4 e = p(b+a(+py) A=t 20D

a(l ~po)(b+pea)*

3. A limit theorem

In the previous section we have derived the probability distribution of the
time intervals of the renewal response process. Let 7, be a random variable with
this distribution.

THEOREM 1. If py=0, then

lim P/ =) = 1—e, t=0.
kroo

ProoF. We observe that u,=pu(b+ax) (b~*—1)/a=0(b"%). We let s depend on
k in such a way that s=e~"" for w=0. We then get }lm dy(s)=r?(p)=b, klim dy(s)=

=1—b=a. We can furthermore replace d,(s)t=r¢(ps)* with b*. This is justified as
follows. Taylor expansions give

r(ps) = b+ (s—1)0(s), (s~ 1)
and
s—1=e " —1 = —whtO(k), (k— ).
Thus

k
(# (@s)/b)* = (1 —wb-10 (k))* = [1 +0 [%]] ~1, (ko).

We rewrite (2.3) as

)=l

do(S)k +d1(s)

Since
. 1—d(s) . 1-d(s) l—ew _
P Taer TR T = = Gt
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we find that
1-b _ 1
1—b+ul+oayw b+aa
k=%

lim pf(e™"") =
koo

1+ w

1t follows that the Laplace—Stieltjes transform of n;/py for k— - tends to 1-|1—w
and thus the theorem is proved.

4. A generalization

We will in this section consider an elimination scheme such that p?(s)=s,
that is, one or more consecutive points of the inhibitory process eliminate only
the next point of the excitatory process. We are interested in a response process,
which consists of those points of the excitatory process, that satisfy the following
condition. The point is the last point in a sequence of k successive retained points
such that between any two consecutive points at most 7 points of the excitatory
process have been eliminated and such that none is already a point of the response
process. The case studied in previous sections corresponds to r=0.

Let pf,, be the geometric transform of the interarrival distribution of this re-
sponse process. We will derive an expression for pf,,(s), interpreted as the prob-
ability for no marking during the response interval. For that purpose we define
ho(s) to be the probability that counting from a retained point at most r points are
eliminated before the next retained point and that no marks are given in the interval
between the two successive retained points. Then

1-[r(s)—r(ps)**

T 9() + 19 (05) ¥ (ps).

ho(s) = 3 1)~ (@3] (ps) =

Let furthermore #;(s) be the probability that at least (r+1) points are eliminated
between two retained points and no marks given. Then

hy(s) = [ () —r¥(@s)I*2.
By proper conditioning we obtain

PAS) = P46 =P @A)+ 3 19(08) (5o,
which gives

5 (@8) o (Y~ {1 — o ()]

@D P = TG P @ P O - P Th G
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From this follows

@ 1—pf,,(5) =
~ 1-r(s) L P =P @) -1
T IR TR R G [”’“ RS s wr S Tt B

which easily gives the following formula for the corresponding expectation T

I 1—cF
3 L =
@.3) " bartick-1?

where
a=1-r(p), b=r(p) and c=1-—ag*.

It follows from (4.3) that

. a r(ps)
lim pf,.(5) = [lh—rm

. 4
= pe(s)k,

where pf is the geometric transform of the length of the time interval between suc-
cessive retained points in this case. Let 7x,» be a random variable with geometric
transform pf, .. We can then, with the aid of (4.1), prove the following theorem. The
proof is similar to the proof of theorem 1.

THEOREM 2.
im pGp, /i,y =0) = 1—e7!, t=0.
koo

5. Some concluding remarks

We have here considered the interaction between two discrete time point proc-
esses. It is easy, by a proper limit process to derive from our results formulas for
the case when an inhibitory Poisson process with intensity A interacts with a general
renewal point process with inter-arrival distribution F.

Our results can be applied to the neuron firing process as follows. Stimuli
arrive to a neuron and some of them are eliminated by an inhibitory process. The
neuron will fire when it receives k stimuli, which are near each other, for instance
between any two successive retained stimuli at most » stimuli have been deleted.

It is shown in [2] how results concerning the interaction of a renewal excitatory
process and a binomial inhibitory process can be applied to a B/G/1 conveyor
system, where customers arrive according to a binomial process and the service
times have a general discrete probability distribution determined by the geometric
transform r?. Furthermore there is a finite waiting room and when it is empty the
server will take a unit from a storage. Now assume that there is place for k units
in this storage and that it is refilled in the following way. Each time the server has
taken more than r units in a row from the conveyer a mechanism is relased so that the
storage is filled up to its full capacity. This implies that the only way the storage
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can be emptied is that the server takes k units from the storage and that between
any two of these units he has taken at most r units from the conveyor. But then
pi,. insection 4 above is the geometric transform of the length of time from an epoch
when the storage is full and the service of a unit is to begin until it is empty for
the first time.
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